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HOW VISIONS OF ZADEH LED TO FORMATION OF

NEW MODELS OF NATURAL LANGUAGE

VILÉM NOVÁK1

Abstract. This is an overview paper that discusses papers by Lotfi A. Zadeh related to natural

language. He was the first who noticed that semantics of the natural language is vague in

principle and suggested modeling it using fuzzy sets. He also came with the idea that some

phenomena, namely linguistic hedges, can be modeled using special operators. In the paper, we

briefly overview some of the essential Zadeh’s papers and discuss results following his ideas. We

especially mention the theory of evaluative linguistic expressions and fuzzy quantifiers.
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1. Introduction

Lotfi A. Zadeh, without a doubt, belongs among the most influential thinkers of 20th century.

His idea of a fuzzy set and the phenomenon of fuzziness has appeared in almost any paper, not

only from mathematics or computer science but also from other scientific areas such as biology,

psychology, sociology, and even various aspects of engineering. He always emphasized the role

of natural language in fuzzy set theory and suggested how fuzzy sets can be used in applications

in which natural language plays an important role. His suggestions are based predominantly

on the fact that the meaning of most words and expressions of natural language is intrinsically

vague. And fuzzy sets are a very appropriate tool for modeling vagueness. Various arguments

in favor of this assertion have been given in [24, 25].

The vagueness phenomenon raises when trying to group together objects that have a certain

property φ. The result is an actualized grouping of objects

X = {x | x is an object having the property φ}.

The essential fact is that X cannot be in general taken as a set since the property φ may be

vague, i.e., it may not be possible to characterize the grouping X precisely and unambiguously;

there can exist borderline elements x for which it is unclear whether they have the property

φ (and thus, whether they belong to X), or not. On the other hand, it is always possible to

characterize, at least some typical objects (prototypes), i.e., objects having typically the property

in concern, and also, objects that for sure do not have φ. For example, everybody can show

a “red apple,” but it is impossible to show “all kinds of red apples”. At the same time, one,

without doubt, says that an orange is not a red apple.

1 University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, Czech Republic

e-mail: Vilem.Novak@osu.cz

Manuscript received January 2021 .

29



30 TWMS J. PURE APPL. MATH., V.12, N.1, SPECIAL ISSUE, 2021

A very good mathematical tool enabling us to grasp such groupings is fuzzy set theory. Its

main idea applies a principle called graded, or fuzzy approach using which a relation between

object and its property is characterized using a scale. Note that for the human mind, it is

natural to introduce a scale whenever a vague property is encountered. For example, we often

say “almost green strawberry”, “a very strong car”, etc. In all these examples, we introduce

“degrees of intensity” of the property in concern that is taken from a scale that must be an

ordered set, and it must have the potential to capture the continuity feature of vagueness, i.e.,

it must be uncountable. Since, at the same time, it must enable us to represent various kinds

of operations with the properties, we come to the notion of an algebra of truth values (see

[11, 30, 32]).

A fuzzy set A is determined by a universe U that is an ordinary set and a membership function

which Zadeh denotes by µA and which assigns to each element u ∈ U its membership degree

µA(u) ∈ [0, 1]. This definition is mathematically insufficient. Therefore, we define a fuzzy set as

a function A : U → [0, 1] where A(u) is a membership degree of u ∈ U . To emphasize that A is

a fuzzy set on U , we can write A ⊂∼ U and explicitly write it as

A =
{
µA(u)

/
u
∣∣ u ∈ U

}
. (1)

We thus put the membership degree A(u) = µA(u). The function µA is here a rule how the

membership degree of u ∈ U should be computed.

The interval [0, 1] is interpreted as a set of truth values and it is a support of an algebra

⟨[0, 1],∨,∧,⊗,→, 0, 1⟩ where ∨,∧ are lattice operations of supremum and infimum and ⊗,→
are additional operations of multiplication and implication. These operations are used for the

definition of operations with fuzzy sets. Note also that [0, 1] can be replaced by support of

arbitrary algebra suitable as an algebra of truth values; for the details, see, e.g., [32].

Note that fuzzy sets can be taken as a certain approximation of vague groupings1. We argue

that such an approximation is a consequence of an indiscernibility relation among objects. For

example, a movie is a sequence of pictures. When projected at a sufficient speed, we cannot

distinguish them one from another, and the result is a vague phenomenon that we perceive as a

continuous movement. Similarly, a shape of a heap of stones is also vague, and when adding or

removing one stone, its shape indiscernibly changes. This is the core of the well known sorites

(heap) paradox :

One stone does not form a heap. If one adds a stone to what is not a heap, then

the result is not a heap. Consequently, there are no heaps.

Using the tools of mathematical fuzzy logic, we can demonstrate that this is not a paradox (cf.

[12]), and since the corresponding logical theory has a model, it does not lead to a contradiction.

2. Zadeh’s papers dealing with various aspects of natural language

2.1. Fuzzy semantics and precisiated natural language. Among the first papers on fuzzy

sets in natural language are [42, 43] published already in 1972–73. The point of departure

in them is the definition of a language L as a fuzzy relation from a set of terms, T = {x |
x is a term of L}, to a universe of discourse U . The fuzzy relation is given by a membership

function µL : T ×U → [0, 1], which associates with each ordered pair (x, y) ∈ T ×U its grade of

membership µL(x, y) ∈ [0, 1]. For each x ∈ T , the membership function µL(x, y) defines a fuzzy

set, M(x) ⊂∼ U , whose membership function is given by µM (x)(y) = µL(x, y). The fuzzy set

M(x) is defined to be the meaning of the term x, with x playing the role of a name for M(x).

1This idea occurred already in [23].
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If a term x ∈ T is a concatenation of other terms in T , that is, x = x1 · · ·xn, xi ∈ T ,

i = 1, . . . , n, then the meaning of x can be expressed in terms of the meanings of x1 · · ·xn
through the use of a lambda-expression, or by solving a system of equations in the membership

functions of the xi which are deduced from the syntax tree of x.

The brilliant Zadeh’s idea is to model linguistic expressions using special operations. One

constituent of complex expressions are also the so-called, hedges which modify the category of

membership, or truth of a predicate or a noun phrase. In his papers [42, 44], Zadeh considers

linguistic hedges such as very, more or less, much, essentially, slightly, etc. and views them as

operators which act on the fuzzy set representing the meaning of its operand. For example, in

the case of the composite term very tall man, the operator very acts on the fuzzy meaning of

the term tall man. Zadeh then defines several elementary operations on fuzzy sets from which

more complicated operations may be built up by combination or composition. The concept of

hedge has been further elaborated by the linguist Lakoff [15] whose work led to establishing the

theory of “hedging” as a part of the classical linguistic research.

Zadeh further extends his ideas in several papers, e.g., [54, 45, 51] where also a particular

language called PRUF (Possibilistic Relational Universal Fuzzy) is introduced. It is a meaning

representation language for natural languages. Its specific feature is the underlying logic, which

is not a two-valued or multivalued logic, but a certain kind of fuzzy logic in which the truth-

values are linguistic, that is, are of the form true, not true, very true, more or less true, not very

true, etc. Let us remark that the idea of using linguistic expressions for truth values instead of

values has never obtained greater attention and did not lead to a well-established logical system.

A very interesting and often cited idea is that of linguistic variable [44]. Recall that this is a

linguistic expression that is a name of a feature of objects, which can be evaluated by various

evaluative expressions. A typical example given by Zadeh is age which is a feature of living

beings (not necessarily people)2 whose values are old, very old, young, medium old, etc. Formal

definition of linguistic variable given by Zadeh is

⟨X , T (X ), V,G,M⟩, (2)

where X is the name of the variable (e.g., age), T (X ) is the set of its values which are special

evaluative expressions of natural language. Furthermore, U is the universe, G a syntactical rule

using which the expressions A ,B, . . . ∈ T (X ) are formed, and M is a semantical rule, using

which every evaluative linguistic expression A ∈ T (X ) is assigned its meaning being a fuzzy

set A in the universe V , i.e. A ⊂∼ V .

Example 2.1. Let us consider a linguistic variable X = Age. Its term set is

T (A ) = {young, very young, not young, young or middle age,

middle age, old, very old, more or less old, rather old, etc.}

Elements of T (A ) are generated using a grammar G. Zadeh suggests it to be a context-free

one. This, however, is a problem since such a grammar also generates terms such as very small

and more or less medium or not extremely big which is not an English expression and has no

meaning. Note that in all Zadeh’s examples of the term set T (X ) are evaluative linguistic

expressions (see below).

2In fact, even to be “living” is unnecessary. For example, it has a good sense to speak about age of stars.
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Let the universe be U = [1, 100]. The semantic rule M assigns to each term A ∈ T (X ) a

fuzzy set M(A ) ⊂∼ U . For example, the meaning of A = young can be the fuzzy set

M(young) =
{
µ(v)

/
v
∣∣∣ µ(v) = max{0, (2.7 − 0.07v)}, v ∈ [1, 100]

}
⊂∼ [1, 100]. (3)

2

Zadeh’s fascinating and helpful idea is that of precisiated natural language [53]. If one reads

works of classical linguists (cf., e.g., [13, 35, 36, 37]) then he/she realizes that natural language is

far too complex with many, many exceptions and so, its full formalization is (at least nowadays)

practically impossible. Therefore, Zadeh came with the idea to formalize only part of the

language, namely that part necessary for various kinds of applications, without capturing all

the neat finenesses of its semantics. This idea seems to be the leading idea for various kinds of

artificial intelligence applications connected with natural language.

2.2. Fuzzy quantifiers. A very fruitful and exciting concept introduced and elaborated by

Zadeh is that of fuzzy quantifiers [47]. According to him, a fuzzy quantifier is obtained when

interpreting Q in the statement “QB are A” as a fuzzy characterization of the relative cardinality

measure by the so-called, sigma-count of B in A. More precisely, let U = {x1, . . . , xn} be a finite

universe and A,B ⊂∼ U be fuzzy sets in U . Then

QB are A 7→ Σcount(B/A) is Q 7→ µQ(Σcount(B/A)), (4)

where Q ⊂∼ [0, 1] is a fuzzy set determined by a membership function µQ that evaluates the

relative size (cardinality) of the fuzzy set B ∩A w.r.t. A, and

Σcount(B/A) =

n∑
i=1

max{µB(xi), µA(xi)}
n∑

i=1
µA(xi)

.

Note that formula (4) consists of two constituents. The first constituent is the “size” of the

fuzzy set B∩A (possibly related to the size of A). Zadeh speaks about cardinality but considers

only fuzzy sets on the finite universe. Hence, in this case, the size of a fuzzy set is well captured

by its cardinality.

The second constituent of the formula (4) is the evaluation of the relative size of B ∩A using

the fuzzy set Q. Zadeh suggests several basic shapes of Q. Some authors even identify fuzzy

quantifiers with it.

2.3. Commonsense reasoning and computing with words. Other parts of Zadeh’s works

related to natural language discuss various aspects of commonsense reasoning [46, 48, 49]. He

argues that commonsense knowledge may be regarded as a collection of dispositions, that is,

propositions that are preponderantly, but not necessarily always, true. Technically, a disposition

may be interpreted as a proposition with implicit fuzzy quantifiers. For example, a disposition

such as Swedes are blond may be interpreted as most Swedes are blond. For purposes of inference

from commonsense knowledge, the conversion of a disposition into a proposition with explicit

fuzzy quantifiers gives rise to syllogistic reasoning consisting of statements of the form

QB are A.

This is a standard expression studied also in the classical theory of generalized quantifiers (cf.

[33, 39, 40]). The difference here consists in the assumption that Q is a fuzzy quantifier.
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A typical syllogism discussed by Zadeh in [56] is

Most M are X

Most M are Y

QC Y are X,

(5)

where QC is an appropriate (fuzzy) quantifier. Below, we will see that such a syllogism is indeed

formally valid.

As a sort of summarization of the results in the papers mentioned above, Zadeh came with

the idea of computing with words [55, 50, 52]. Recall that computing is classically centered

on manipulation with numbers and symbols. In contrast, computing with words should be a

methodology in which the objects of computation are words and propositions drawn from a

natural language. For example, we may use expressions such as small, large, far, heavy, not

very likely, the price of shares is declining, Prague is not far from Brno, the prices recently

significantly increased, etc. The primary purpose of using words or sentences instead of numbers

is that linguistic characterizations are, in general, less specific than numerical ones but much

closer to the way that humans express and use their knowledge.

For example, if we say “John’s weight is big” is less specific than “John’s weight is 110 kg”.

Despite its less informative nature, the value big allows humans to naturally express and deal

with information that may be vague or incomplete. Computing with words is inspired by the

remarkable human capacity to perform a wide variety of physical and mental tasks without any

measurements and any computations. Familiar examples of such tasks are parking a car, driving

in heavy traffic, playing golf, riding a bicycle, understanding speech, or summarizing a story.

3. Evaluative linguistic expressions

Zadeh’s ideas about fuzzy semantics and linguistic hedges led to the more general and com-

prehensive concept of evaluative linguistic expression. A deeper study of its semantics require

the following important concepts that are missing in Zadeh’s papers: possible world, intension,

and extension.

3.1. Definition of evaluative expression. Note that all examples given by Zadeh in his

papers are evaluative (linguistic)3 expressions. Their formal theory has been published in several

papers (see [26, 28] and elsewhere) and so, we will not repeat it here in detail.

We distinguish simple and compound evaluative expressions. The former have a general form

⟨linguistic hedge⟩⟨TE-adjective⟩,

where ⟨TE-adjective⟩ is a special trichotomic4 evaluative adjective that is either of the gradable

adjectives (big, cold, deep, fast, friendly, happy, high, hot, important, long, popular, rich, strong,

tall, warm, weak, young), evaluative adjectives (good, bad, clever, stupid, ugly, etc.), and specific

adjectives such as left, middle, right.

The compound evaluative expressions are formed using negation and the standard connectives

“and” and “or”. We must be careful, however, because semantic rules do not allow us to form

arbitrary boolean combinations. For example “very small and more or less medium or not

extremely big” has no sense and, so, it is not an English expression.

3We will usually omit the adjective “linguistic”.
4They form the fundamental evaluative trichotomy : two antonyms and a middle member, for example low,

medium, high; stupid, average, clever , etc.
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In relation with linguistic variable, Zadeh considers expressions of the form

X is ⟨evaluative expression⟩, (6)

where variable X takes values of some measurable feature of some noun. They are a simplified

from of a special class of verb phrases of the form

⟨noun⟩ is ⟨evaluative expression⟩ (7)

that are called evaluative linguistic predications. The verb “is” in (6) or (7) has the role of a

copula joining object and its property. Examples are “temperature is low, this woman is very

intelligent, the force is more or less weak, etc.

3.2. Possible worlds, context. The concept of a possible world was introduced by Carnap

[2] and later studied by many logicians and philosophers. Recall the famous example by Quine

“morning star is evening star” which is true for Venus on Earth but can be false on another

planet. Informally, the possible world is a state of the world at a given point in time and space.

Since such a definition can hardly be formalized, logicians usually take the possible world as a

particular index using which we can distinguish various situations that lead to specific extensions

(see below). In the case of evaluative expressions considered by Zadeh in his works, the possible

world can be defined explicitly as follows.

Evaluative expressions specify a certain part of a nonempty, linearly ordered, and bounded set.

Hence, we can model possible world for them as an interval of reals [vL, vR] = [vL, vS ]∪[vS , vR] ⊂
R, in which three distinguished limit points can be determined: a left bound vL, a right bound

vR, and a central point vS . We will formally identify possible world with an ordered triplet

w = ⟨vL, vS , vR⟩. (8)

This definition has a simple justification: take into account, for example, the predication small

town. Then, the corresponding possible world (i.e., the number of inhabitants) for the Czech

Republic can be

⟨3 000, 50 000, 1 000 000⟩,
while for the USA it can be

⟨30 000, 200 000, 10 000 000⟩.
Thus, extremely small town in the Czech Republic has 3 000 people, and extremely big town 1

million. In the USA, these numbers are 10 times bigger.

The set of possible worlds for evaluative linguistic expressions is the set of triples of numbers

W = {⟨vL, vS , vR⟩ | vL, vS , vR ∈ [0,∞) and vL < vS < vR}.

The term possible world comes from general logic and encompasses whatever situation in a

broad context. Since for evaluative expressions, this is rather specific, we will replace the term

possible world with context.

3.3. The concept and semantics of evaluative expressions.

3.3.1. Necessity of intension. Besides possible world, Carnap in [2] also gave many arguments

in favor of the concepts of intension and extension (cf. also [5, 9, 38])). Recall that intension

of a linguistic expression, of a sentence, or a concept, is the property denoted by it. Intension

may lead to different truth values in various possible worlds, but it is itself invariant with

respect to them. Each concept or a linguistic expression is a name of just one intension which

does not change when changing the possible world. Intensions are assumed to keep Frege’s

compositionality principle: a more complex intension is a function of simpler ones.
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Extension of a linguistic expression is a class of elements determined by an intension in a

given time and possible world. In terms of fuzzy set theory, an extension is a fuzzy set.

On the basis of Carnap’s suggestion, we define intension of a linguistic expression A as a

function

Int(A ) : W → F (U), (9)

where F (U) is a set of all fuzzy sets over the universe U .

An example of the necessity to distinguish between the notion of intension and extension has

been given in [29]: let us identify the meaning of a linguistic expression with a specific fuzzy set

of elements. For example, take the meaning of A = young from (3) and consider the age 30.

Then the membership degree of 30 in the fuzzy set M(young) is M(Young)(30) = 0.6. Let us

now apply this definition to the meaning of the following sentence:

If Berta is young in the degree 0.6, then she is about 30.

If Berta is a woman, then the sentence “If a woman is young in the degree 0.6, then she is about

30” has a well-defined meaning. However, if Berta is a dog, then the sentence “If a dog is young

in the degree 0.6, then it is about 30” has no meaning since dogs cannot live more than 20 years.

Of course, we can solve this problem by defining a different fuzzy set of dogs’ ages. But, this

is just the implementation of the context in a sense above. Note that the intension (9) remains

the same independently on whether “Berta is young” concerns woman or dog.

3.3.2. Forming extension. Zadeh’s idea to model linguistic hedges using special operators on

extensions (i.e., on fuzzy sets modeling them) has been further developed and modified by

various authors. The problem pointed out already by Lakoff [15] is that hedge acts not only on

the fuzzy set but also on the elements of the universe. The first modification has been suggested

by the author of this paper in [22] where the hedge is modeled using two functions: a shift

over the universe and modification of the membership function. Other suggestions came from

Bouchon-Meunier, Jia and Ying [1, 41] whose model of the modifier also includes shift over the

universe. A related to it is the suggestion of DeCock and Kerre [3]. The hedge in the above

works is essentially modeled using the formula

m(A) = r ◦A ◦ t,

where A ⊂∼ U is a fuzzy set being an extension of some linguistic expression, t : U → U is called

premodifier and r : [0, 1] → [0, 1] a postmodifier.

It is important that due to the analysis of Lakoff [15], the relation

very small ⊂ small ⊂ roughly small,

and similarly for the other expressions must hold. This means that the extensions must look

as in Fig.1. They are obtained by a simple procedure using a function νa,b,c : [0, 1] → [0, 1]

determined by three parameters a, b, c using which is each hedge uniquely characterized. This

model of the semantics of simple evaluative expressions is justified and formally described in

[26]. Specific formulas for computation of all the extensions can be found in [31].
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Figure 1. Shapes of fuzzy sets modeling extensions of simple evaluative expressions. Right: A function νa,b,c

using which we obtain all the shapes on the left. Each hedge is assigned unique combination of the parameters

a, b, c.

With respect to the concept of intension, a modified definition of linguistic variable is the

following (cf. [29]).

Definition 3.1. Let φ be a feature of objects referred to by a noun phrase X . Then the

linguistic variable is a tuple

⟨X , T (X ), G, V,M,W ⟩,
where

(a) T (X ) is a set of evaluative linguistic expressions.

(b) G is a syntactic rule generating expressions from A ∈ T (X ).

(c) W is the set of possible worlds.

(d) M is a semantical rule assigning to each evaluative expression A ∈ T (X ) its intension (9).

4. Quantifiers in natural language

Quantifiers form a wide class of expressions occurring in natural language. Typical examples

are, except for the classical “for all” and “exists”, also “most, many, a lot of, a few, several,

almost all”, and other ones. In logic, their theory is called the theory of generalized quantifiers.

This theory was initiated by Mostowski [19] and since then studied by many authors (cf. [14,

16, 33, 40] and the citations therein).

The classical theory, however, does not take into account the fact that these quantifiers have

vague semantics. This was noticed only by Zadeh and inspired him to introduce the concept of

fuzzy quantifier. His theory has been further developed by various authors. For example, in [10],

Glöckner generalized the above-cited works and developed a theory of semi-fuzzy quantifiers,

i.e., fuzzy quantifiers defined on crisp sets, and suggested a method for how semifuzzy quantifiers

can be transferred to their fuzzy analogs. Many results continuing Zadeh’s theory have been

summarized by Liu and Kerre in [17, 18] as well as Delgado et al. in [4] where a lot of further

citations can be found.

When specifying the universe of quantification we must take into account that it can also be

infinite. For classical quantifiers ∀ and ∃, we face no problem. The situation, however, changes

when considering non-classical ones. Zadeh was aware of it, and, therefore, he considers only
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finite cardinality of the support of the fuzzy universe of quantification. However, then definition

(4) will not work for statements such as “this lemonade contains a lot of sugar”, “a little of sauce

remained in the can”, “the bottle is almost full”, where the corresponding amounts of lemonade

(sugar, sauce) are represented by uncountable sets whose cardinality is infinite. A solution is

to replace cardinality by measure5. The role of measure in the theory of fuzzy quantifiers was

recognized by Holčapek, and Dvořák, who developed a sophisticated mathematical theory of

measure-based fuzzy quantifiers [6, 7, 8].

The Zadeh’s idea of fuzzy quantifiers is closely related to the concept intermediate quantifiers

introduced and studied in detail by Peterson in [34]. Intermediate quantifiers are expressions

such as most, a lot of, many, a few, a great deal of, large part of, small amount of, whose

semantics lays between the above classical ∀ and ∃. Peterson also studied generalized Aristotle’s

syllogisms and the square of opposition in which intermediate quantifiers occur. He, besides

others, proved validity of 105 syllogisms with intermediate quantifiers. However, he did not

leave the realm of classical two-valued logic.

Formalization of Peterson’s theory in mathematical fuzzy logic has been suggested by the

author of this paper in [27]. Since “quantifier” is a logical concept, it is natural to plunge

it in some formal logical language. The intermediate quantifiers are thus modeled by special

formulas of higher-order fuzzy logic (fuzzy type theory). The main idea is that intermediate

quantifiers are classical general or existential quantifiers for which the universe of quantification

is modified and the modification can be imprecise. Hence, an intermediate quantifier is either

of the formulas

(Q∀
Ev x)(B,A) ≡ (∃z)[(∀x)((B|z)x⇒⇒⇒ Ax)∧∧∧ Ev((µB)(B|z))], (10)

(Q∃
Ev x)(B,A) ≡ (∃z)[(∃x)((B|z)x∧∧∧Ax)∧∧∧ Ev((µB)(B|z))]. (11)

Both kinds of quantifiers (10) or (11) construe the sentence

“⟨Quantifier⟩ B are A”.

The formula B represents a universe of quantification. The symbol B|z denotes cut of a fuzzy set

B by z which takes from B only those singletons that occur also in z. The formula µ represents

a measure that is evaluated by an evaluative linguistic expression Ev , for example, extremely

big, very big, not small.

The following special intermediate quantifiers can be introduced:

A: All B are A := (Q∀
Bi∆∆∆x)(B,A) ≡ (∀x)(Bx⇒⇒⇒ Ax),

P: Almost all B are A := (Q∀
BiEx x)(B,A),

T: Most B are A := (Q∀
BiVe x)(B,A),

K: Many B are A := (Q∀
¬Sm x)(B,A),

I: Some B are A := (Q∃
Bi∆∆∆x)(B,A) ≡ (∃x)(Bx∧∧∧Ax).

Computation of these quantifiers is simple and straightforward. For example,

(Most x)(B,A) =
∨{∧

x∈U
((B|Z)(x) → A(x)) ∧ BiVe(µ(B,B|Z))

∣∣∣∣∣Z ∈ F (U)

}
, (12)

5It should be noted that Zadeh in [47] also mentions that the concept of cardinality considered by him is

related to measure.
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where B,A,Z ⊂∼ U , → is a fuzzy implication6, BiVe is extension of the expression very big and

µ(B,B|Z) is a measure of a fuzzy set B|Z relative w.r.t. B. Formula (12) provides rules how a

truth value of the statement

“Most B are A”

can be computed. Stating informally, we take in (12) the highest (supremum of) truth value

of the statements that each element x of B|Z ⊂∼ U for any Z ⊂∼ U has a property A and, at

the same time, size (measure) of B|Z w.r.t. B is very big. Example of such statement is “Most

students (B) are diligent (A)”.

The power of the formal theory of intermediate quantifiers consists in its wide generality

because its results hold in any model and we can apply its strong formalism in proving further

properties. It is also possible to prove formally validity of over 100 generalized syllogisms. A

deep analysis of them has been given in papers [20, 21]. Recall that a syllogism is a triplet of

formulas ⟨P1, P2, C⟩ where P1 is a major premise, P2 a minor premise and C is a conclusion.

This syllogism is valid in a theory T if T ⊢ P1 &&&P2 ⇒⇒⇒ C where &&& is a strong conjunction

interpreted here by  Lukasiewicz conjunction a ⊗ b = max{0, a + b − 1}, a, b ∈ [0, 1]. Then the

syllogism (5) suggested by Zadeh, e.g., in [56] is valid with the quantifier QC := Some.

5. Conclusion

In this paper, we focused on L. A. Zadeh’s contribution to modeling natural language se-

mantics and using his models in applications. He was the first who noticed that the semantics

of the natural language is vague in principle and suggested modeling it using fuzzy sets. He

also came with the idea that some phenomena can be modeled using special operators. This

concerns especially the concept of linguistic hedge that has also been adopted by linguists. His

suggestion has been further extended, and now it seems to be well established. A suggestion to

develop a model of linguistic semantics taking up a wider part of natural language semantics

than that considered by Zadeh (this pertains mostly among evaluative linguistic expressions and

quantifiers), including nouns and verbs, has been discussed in [28] and also in the book [23].

Let us emphasize that all the papers cited here (and even many more ones) would probably

do not appear if not being Zadeh’s visionariness and courage to consider areas that had been

left mostly untouched by classical mathematics.
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[6] Dvořák, A., Holčapek, M., (2014), Type ⟨1, 1⟩ fuzzy quantifiers determined by fuzzy measures on residuated

lattices, part I, Fuzzy Sets Syst., 242, pp.31-55.

6We usually use the  Lukasiewicz one a → b = min{1, 1 − a + b}, a, b ∈ [0, 1].
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